Origin is unreachable Error code 523 2023-06-15 205834 UTC What happened? The origin web server is not reachable. What can I do? If you're a visitor of this website Please try again in a few minutes. If you're the owner of this website Check your DNS Settings. A 523 error means that Cloudflare could not reach your host web server. The most common cause is that your DNS settings are incorrect. Please contact your hosting provider to confirm your origin IP and then make sure the correct IP is listed for your A record in your Cloudflare DNS Settings page. Additional troubleshooting information here. Cloudflare Ray ID 7d7dbae96a35d0d9 • Your IP • Performance & security by Cloudflare
ModulMatematika SMA dan Soal Latihan 05 Fungsi Logaritma . 2 306 Download (1) 306 Download (1)Lukiskan grafik fungsi eksponensial berikut! a. fx = 2x+1 b. fx = 23x-5 Jawab Berikut grafik dari soal di atas. - Jangan lupa komentar & sarannya Email nanangnurulhidayat
Langkahlangkah sketsa grafik fungsi kuadrat f ( x) = a x 2 + b x + c : 1). Menentukan titik potong (tipot) pada sumbu X (jika ada) dengan cara mensubstitusi y = 0 , sehingga diperoleh akar-akar dari a x 2 + b x + c = 0 yaitu x 1 dan x 2 . Artinya tipotnya ( x 1, 0) dan ( x 2, 0) . 2). Menentukan titik potong (tipot) pada sumbu Y dengan caraUntuk menggambar grafik fungsi eksponen,kita hanya perlu membuat tabel dan mengambil nilai – nilai x tertentu dan menghitung nilai dari fungsi. Selanjutnya kita gambar koordinat titik – titik x, y yang kita peroleh dan menghubungkan titik – titik ini untuk memperoleh grafik fungsi eksponen. Lebih jelasnya kita perhatikan contoh – contoh di bawah ini ! . Contoh 1 Buatlah Sketsa grafik dari $latex y= fx=2^{x}$ Jawab Pertama, kita ambil titik – titik x sebagai domain dari fungsi. Disini kita ambil nilai x dari – 3 sampai 3. Untuk x = -3 Maka nilai y = f 3 = $latex 2^{-3}=\frac{1}{8}$. Dan titiknya adalah -3 ,$latex \frac{1}{8}$. Untuk x = -2 , Maka nilai y = f -2 = $latex 2^{-2}=\frac{1}{4}$. Dan titiknya adalah -2 , $latex \frac{1}{4}$. Untuk x = -1 , Maka nilai y = f -1 = ½ . Dan titiknya adalah -1, ½ . Untuk x = 0 , Maka nilai y = f 0 = 1. Dan titiknya adalah 0,1 . Untuk x = 1, Maka nilai y = f 1 = 2. Dan titiknya adalah 1, 2. Untuk x = 2, Maka nilai y = f 2 = 4. Dan titiknya adalah 2, 4. Untuk x = 3 , Maka nilai y = f 3 = 8. Dan titiknya adalah 3, 8. Hubungkan semua pasangan titik ini, sehingga kita bisa dapatkan grafiknya sebagai berikut !. Contoh 2 Buatlah Sketsa Grafik Jawab Dengan Cara yang sama dengan di atas yaitu dengan mensubstitusi nilai x dari -3 sampai dengan 3 ke dalam fungsi fx kita dapatkan tabel berikut !. Dan grafiknya adalah sebagai berikut !. Contoh 3 Buatlah grafik fungsi eksponensial Jawab Titik potong terhadap sumbu x , terjadi jika y atau fx bernilai 0, sehingga Tidak ada nilai x yang memenuhi untuk fx = 0. Artinya titik potong terhadap sumbu x berada pada saat nilai x di negative tak berhingga. Titik potong terhadap sumbu y, berarti x = 0 berarti titik potong terhadap sumbu y terjadi di titik 0, Titik bantunya bisa dilihat di tabel berikut Grafiknya adalah sebagai berikut ! dari ketiga contoh di atas bisa disimpulkan bahwa grafik fungsi eksponen memiliki asimtot datar yaitu sumbu x, untuk nilai a atau bilangan pokok fungsi bernilai lebih dari nol maka kecenderungan grafiknya bergerak dari kiri ke kanan atas. dan untuk nilai a bilangan pokok fungsi, kecenderungan grafiknya bergerak dari kanan bawah ke kiri atas. Demikianlah pembahasan singkat saya tentang bagaimana melukis grafik fungsi eksponen. Mudah-mudahan bisa membantu. Jika teman – teman ada saran, silahkan tulis di kolom komentar. Salam
Semogabeberapa contoh di bawah ini dapat membantu anda menyelesaikan soal-soal yang terkait dengan persamaan dan pertidaksamaan trigonometri. Rumus-rumus Dasar Persamaan Trigonometri. 1. sin x = sin α. x₁ = α + k . 360⁰ atau x₂ = (180⁰ - α ) + k . 360⁰. 2. cos x = cos α. x = ± α + k . 360⁰. 3. tan x = tan α.
Padabab ini yang akan dibahas adalah fungsi eksponen sederhana, yakni fungsi eksponen dengan bentuk: y = alogkx dimana a > 0 , a 1, k > 0 dan a, k Real Untuk lebih jelasnya, ikutilah contoh soal berikut ini : 01. Lukislah sketsa grafik fungsi y = 2log x Jawab Titik potong dengan sumbu-X : y = 0 Sehingga : 0 = 2log x x = 20 x = 1